MATH 150A Winter 2020 - Problem Set 1

due January 17

- 1. Write the operation table for the union operation \cup on $\mathcal{P}(\{1,2\})$ (the set of all subsets of $\{1,2\}$).
- 2. Determine whether each set and binary operation is a group. If no, which properties does it fail? If yes, is it abelian? Find an identity element if one exists.
 - (a) (The set of positive integers, +).
 - (b) $(\mathbb{C} \setminus \{0\}, \cdot).$
 - (c) $(\mathcal{P}(\{1,2\}), \cup).$
 - (d) (The set of functions $\mathbb{Z} \to \mathbb{Z}$, composition).
 - (e) (The set of bijective functions $\mathbb{Z} \to \mathbb{Z}$, composition).
- 3. (2.1.2) Prove the following properties of inverses.
 - (a) If an element a has a left-inverse ℓ and a right-inverse r, i.e. $\ell a = 1$ and ar = 1, then $\ell = r$, a is invertible and r is its inverse.
 - (b) If a is invertible, its inverse is unique.
 - (c) If a and b are invertible, then so is ab and its inverse is $b^{-1}a^{-1}$.
- 4. (2.2.2) Let S be a set with a binary operation that is associative and has an identity element. Prove that the subset consisting of the invertible elements in S is a group.
- 5. (2.2.3) Let x, y, z, w be elements of a group G.
 - (a) Solve for y if $xyz^{-1}w = 1$.
 - (b) Suppose that xyz = 1. Does it follow that yzx = 1? Does it follow that yxz = 1?
- 6. The Klein four group V is the group with 4 elements that can be represented by matrices

$$\begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}.$$

- (a) Find the order of each element of V.
- (b) Find all subgroups of V.
- 7. (2.2.4) In which of the following cases is H a subgroup of G? If not, say why not.
 - (a) $G = \operatorname{GL}_n(\mathbb{C})$ and $H = \operatorname{GL}_n(\mathbb{R})$. ($\operatorname{GL}_n(K)$ denotes the multiplicative group of invertible $n \times n$ matrices with entries in K.)
 - (b) $G = \mathbb{R}^{\times}$ and $H = \{-1, 1\}$.

- (c) $G = (\mathbb{Z}, +)$ and H is the set of positive integers.
- (d) $G = \mathbb{R}^{\times}$ and H is the set of positive reals.
- (e) $G = \operatorname{GL}_2(\mathbb{R})$ and H is the of matrices $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, with $a \neq 0$.